
The Embedded I/O Company

TPMC500-S
Linux Device D

Optical Isolated 32 Chann

Version 2.0.x

User Manu

Issue 2.0.2

July 2024

TEWS Technologies Gm

Eggerstedter Weg 14, 25421 Pinnebe

Phone: +49 (0) 4101 4058

e-mail: info@tews.com www.tews
W-82
river

el 12 Bit ADC

al

bH

rg, Germany

 0

.com

mailto:info@tews.com
http://www.tews.com/

TPMC500-SW-82 - Linux Device Driver Page 2 of 31

TPMC500-SW-82

Linux Device Driver

Optical Isolated 32 Channel 12 Bit ADC

This document contains information, which is
proprietary to TEWS Technologies GmbH. Any
reproduction without written permission is forbidden.

TEWS Technologies GmbH has made any effort to
ensure that this manual is accurate and complete.
However TEWS Technologies GmbH reserves the
right to change the product described in this
document at any time without notice.

TEWS Technologies GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2001-2024 by TEWS Technologies GmbH

Issue Description Date

1.0 First Issue September 26, 2001

1.1 New ioctl() function TP500_IOCSMODTYPE May 15, 2002

1.2 General Revision February 27, 2004

1.3.0 Kernel 2.6.x Support March 15, 2005

1.3.1 File list modified, New Address TEWS LLC, general revision September 27, 2007

1.4.0 New Flag TP500_FL_RAPID for read(), Address TEWS LLC removed September 22, 2010

2.0.0 General revision. API documentation added. July 21, 2014

2.0.1 General revision, COPYING-File added to file-list May 23, 2019

2.0.2 New address of TEWS Technologies GmbH July 29, 2024

TPMC500-SW-82 - Linux Device Driver Page 3 of 31

Table of Contents

1 INTRODUCTION ... 4

2 INSTALLATION .. 5

Build and install the Device Driver .. 5

Uninstall the Device Driver .. 6

Install Device Driver into the running Kernel ... 6

Remove Device Driver from the running Kernel .. 6

Change Major Device Number ... 7

3 API DOCUMENTATION ... 8

General Functions... 8

3.1.1 tpmc500Open ... 8
3.1.2 tpmc500Close ... 10
3.1.3 tpmc500SetModelType ... 12
3.1.4 tpmc500GetModuleInfo .. 14
Device Access Functions ... 16

3.2.1 tpmc500Read ... 16
3.2.2 tpmc500StartSequencer ... 19
3.2.3 tpmc500ReadSequencer .. 22
3.2.4 tpmc500ReadSequencerTimeout ... 25
3.2.5 tpmc500StopSequencer ... 28

4 DIAGNOSTIC .. 30

TPMC500-SW-82 - Linux Device Driver Page 4 of 31

1 Introduction
The TPMC500-SW-82 Linux device driver allows the operation of a TPMC500 ADC PMC on Linux
operating systems.

The TPMC500 device driver software includes the following features:

 read value from a selected ADC channel
 use sequencer mode for continuously reads from selected channels
 correction of input values with the factory programmed correction data
 select hardware supported gains

The TPMC500-SW-82 device driver supports the modules listed below:

TPMC500 Optically Isolated 32 Channel 12 Bit ADC PMC

To get more information about the features and use of the supported devices it is recommended to
read the manuals listed below.

TPMC500 Hardware User Manual

TPMC500-SW-82 - Linux Device Driver Page 5 of 31

2 Installation
Following files are located on the distribution media:

Directory path ‘TPMC500-SW-82’:

TPMC500-SW-82-2.0.2.pdf This manual in PDF format
TPMC500-SW-82-SRC.tar.gz GZIP compressed archive with driver source code
Release.txt Release information
ChangeLog.txt Release history

The GZIP compressed archive TPMC500-SW-82-SRC.tar.gz contains the following files and
directories:

Directory path ‘./tpmc500/’:

tpmc500.c Driver source code
tpmc500def.h Driver include file
tpmc500.h Driver include file for application program
Makefile Device driver make file
makenode Script for device node creation
COPYING Copy of the GNU Public License (GPL)
api/tpmc500api.h API include file
api/tpmc500api.c API source file
include/config.h Include of system dependent config.h
include/tpxxxhwdep.c Low level hardware access functions source file
include/tpxxxhwdep.h Access functions header file
include/tpmodule.c Driver independent library
include/tpmodule.h Driver independent library header file
example/tpmc500exa.c Example application
example/Makefile Example application makefile

In order to perform an installation, extract all files of the archive TPMC500-SW-82-SRC.tar.gz to the
desired target directory. The command ‘tar -xzvf TPMC500-SW-82-SRC.tar.gz’ will extract the files
into the local directory.

 Login as root and change to the target directory

 Copy tpmc500.h and api/tpmc500api.h to /usr/include

 Build and install the Device Driver

 Login as root

 Change to the target directory

 To create and install the driver in the module directory /lib/modules/<version>/misc enter:

make install

 To update the device driver’s module dependencies, enter:

depmod -a

TPMC500-SW-82 - Linux Device Driver Page 6 of 31

 Uninstall the Device Driver

 Login as root

 Change to the target directory

 To remove the driver from the module directory /lib/modules/<version>/misc enter:

make uninstall

 Install Device Driver into the running Kernel

 To load the device driver into the running kernel, login as root and execute the following
commands:

modprobe tpmc500drv

 After the first build or if you are using dynamic major device allocation it is necessary to create
new device nodes on the file system. Please execute the script file makenode to do this. If your
kernel has enabled a device file system (devfs or sysfs with udev) then you have to skip
running the makenode script. Instead of creating device nodes from the script the driver itself
takes creating and destroying of device nodes in its responsibility.

sh makenode

On success the device driver will create a minor device for each TPMC500 module found. The first
module of the first TPMC500 module can be accessed with device node /dev/tpmc500_0, the second
module with device node /dev/tpmc500_1, the third TPMC500 module with device node
/dev/tpmc500_2 and so on.

The assignment of device nodes to physical TPMC500 modules depends on the search order of the
PCI bus driver.

 Remove Device Driver from the running Kernel

 To remove the device driver from the running kernel login as root and execute the following
command:

modprobe –r tpmc500drv

If your kernel has enabled devfs or sysfs (udev), all /dev/tpmc500_x nodes will be automatically
removed from your file system after this.

Be sure that the driver isn’t opened by any application program. If opened you will get the
response “tpmc500drv: Device or resource busy” and the driver will still remain in the system
until you close all opened files and execute modprobe –r again.

TPMC500-SW-82 - Linux Device Driver Page 7 of 31

 Change Major Device Number

This paragraph is only for Linux kernels without dynamic device management. The TPCM500 driver
use dynamic allocation of major device numbers per default. If this isn’t suitable for the application it’s
possible to define a major number for the driver.

To change the major number edit the file tpmc500def.h, change the following symbol to appropriate
value and enter make install to create a new driver.

TPMC500_MAJOR Valid numbers are in range between 0 and 255. A value of 0 means
dynamic number allocation.

Example:

#define TPMC500_MAJOR 122

Be sure that the desired major number is not used by other drivers. Please check /proc/devices
to see which numbers are free.

Keep in mind that it is necessary to create new device nodes if the major number for the
TPMC500 driver has changed and the makenode script is not used.

TPMC500-SW-82 - Linux Device Driver Page 8 of 31

3 API Documentation

 General Functions

3.1.1 tpmc500Open

NAME

tpmc500Open – Opens a Device

SYNOPSIS

TPMC500_HANDLE tpmc500Open
(

char *DeviceName
)

DESCRIPTION

Before I/O can be performed to a device, a file descriptor must be opened by a call to this function.

PARAMETERS

DeviceName

This parameter points to a null-terminated string that specifies the name of the device. The first
TPMC500 device is named “/dev/tpmc500_0” the second device is named “/dev/tpmc500_1”
and so on.

EXAMPLE

#include “tpmc500api.h”

TPMC500_HANDLE hdl;

/*

** open file descriptor to device

*/

hdl = tpmc500Open(“/dev/tpmc500_0”);

if (hdl == NULL)

{

 /* handle open error */

}

TPMC500-SW-82 - Linux Device Driver Page 9 of 31

RETURNS

A device handle, or NULL if the function fails. An error code will be stored in errno.

ERROR CODES

The error codes are stored in errno.

The error code is a standard error code set by the I/O system.

TPMC500-SW-82 - Linux Device Driver Page 10 of 31

3.1.2 tpmc500Close

NAME

tpmc500Close – Closes a Device

SYNOPSIS

TPMC500_STATUS tpmc500Close
(

TPMC500_HANDLE hdl
)

DESCRIPTION

This function closes previously opened devices.

PARAMETERS

hdl

This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc500api.h”

TPMC500_HANDLE hdl;

TPMC500_STATUS result;

/*

** close file descriptor to device

*/

result = tpmc500Close(hdl);

if (result != TPMC500_OK)

{

 /* handle close error */

}

TPMC500-SW-82 - Linux Device Driver Page 11 of 31

RETURNS

On success, TPMC500_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC500_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC500-SW-82 - Linux Device Driver Page 12 of 31

3.1.3 tpmc500SetModelType

NAME

tpmc500SetModelType – Set the module type of the TPMC500

SYNOPSIS

TPMC500_STATUS tpmc500SetModelType
(

TPMC500_HANDLE hdl,
int ModuleType

)

DESCRIPTION

This function configures the model type of the TPMC500.

This function must be called before the first AD conversion can be started.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

ModuleType

This argument specifies the model type of the TPMC500. The following model types are
supported.

Value Description

TPMC500_TYPE_10 TPMC500-10 (Gain 1/2/5/10, +/-10V, Front I/O)

TPMC500_TYPE_11 TPMC500-11 (Gain 1/2/4/8, +/-10V, Front I/O)

TPMC500_TYPE_12 TPMC500-12 (Gain 1/2/5/10, 0-10V, Front I/O)

TPMC500_TYPE_13 TPMC500-13 (Gain 1/2/4/8, 0-10V, Front I/O)

TPMC500_TYPE_20 TPMC500-20 (Gain 1/2/5/10, +/-10V, Back I/O)

TPMC500_TYPE_21 TPMC500-21 (Gain 1/2/4/8, +/-10V, Back I/O)

TPMC500_TYPE_22 TPMC500-22 (Gain 1/2/5/10, 0-10V, Back I/O)

TPMC500_TYPE_23 TPMC500-23 (Gain 1/2/4/8, 0-10V, Back I/O)

TPMC500-SW-82 - Linux Device Driver Page 13 of 31

EXAMPLE

#include “tpmc500api.h”

TPMC500_HANDLE hdl;

TPMC500_STATUS result;

result = tpmc500SetModelType(hdl, TPMC500_TYPE_11);

if (result != TPMC500_OK)

{

 /* handle error */

}

RETURNS

On success, TPMC500_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC500_ERR_INVALID_HANDLE The specified TPMC500_HANDLE is invalid.

TPMC500_ERR_RANGE Invalid channel number.

TPMC500-SW-82 - Linux Device Driver Page 14 of 31

3.1.4 tpmc500GetModuleInfo

NAME

tpmc500GetModuleInfo – Get module information data

SYNOPSIS

TPMC500_STATUS tpmc500GetModuleInfo
(

TPMC500_HANDLE hdl,
TPMC500_INFO_BUFFER *pModuleInfo

)

DESCRIPTION

This function reads module information data such as configured module type, location on the PCI bus
and factory programmed correction data.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

pModuleInfo

This argument specifies a pointer to the module information buffer.

typedef struct

{

 unsigned int Variant;

 unsigned int PciBusNo;

 unsigned int PciDevNo;

 unsigned int ADCOffsetCal[4];

 unsigned int ADCGainCal[4];

} TPMC500_INFO_BUFFER;

Variant

This parameter returns the configured module variant (e.g. 10 for a TPMC500-10).

PciBusNo, PciDevNo

These parameters specify the PCI location of this module

TPMC500-SW-82 - Linux Device Driver Page 15 of 31

ADCOffsetCal[4]

This array returns the factory programmed offset correction values for the different gain
settings. Array index 0 contains the value for gain 1, index 1 contains the value for gain 2
and so forth.

ADCGainCal[4]

This array returns the factory programmed gain correction for the different gain settings.
Array index 0 contains the value for gain 1, index 1 contains the value for gain 2 and so
forth.

EXAMPLE

#include “tpmc500api.h”

TPMC500_HANDLE hdl;

TPMC500_STATUS result;

TPMC500_INFO_BUFFER ModuleInfo

result = tpmc500GetModuleInfo(hdl, &ModuleInfo);

if (result != TPMC500_OK)

{

 /* handle error */

}

RETURNS

On success, TPMC500_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC500_ERR_INVALID_HANDLE The specified TPMC500_HANDLE is invalid.

TPMC500-SW-82 - Linux Device Driver Page 16 of 31

 Device Access Functions

3.2.1 tpmc500Read

NAME

tpmc500Read – Read converted AD value

SYNOPSIS

TPMC500_STATUS tpmc500Read
(

TPMC500_HANDLE hdl,
int channel,
int gain,
int flags,
int *pAdcVal

)

DESCRIPTION

This function starts an AD conversion on the specified channel and returns the converted value.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

channel

This argument specifies the input channel number. Valid channels for single-ended mode are
1…32, for differential mode 1...16.

gain

This argument specifies the gain for this channel. Valid gains are 1, 2, 5, 10 for
TPMC500-10/-12/-20/-22 and 1, 2, 4, 8 for TPMC500-11/-13/-21/-23.

TPMC500-SW-82 - Linux Device Driver Page 17 of 31

flags

Set of bit flags that control the AD conversion. The following flags could be OR’ed:

Flag Meaning

TPMC500_DIFF If this flag is set the ADC input works in differential mode
otherwise in single-ended (default).

TPMC500_CORR Perform an offset and gain correction with factory calibration
data stored in the TPMC500 EEPROM.

TPMC500_FAST If this flag is set the fast (polled) mode will be used. The driver
will not use interrupts, instead it will wait in a busy loop until the
settling time (if necessary) and the conversion is finished.
Conversions using this mode will be handled faster, but the
processor executes a busy loop and other tasks will not be
handled during the loops.

pAdcVal

This argument points to an integer variable where the AD value will be returned. The 12-bit
value is always moved to the least significant bits. The returned value is in the range from
0…4095 for unipolar input and -2048…2047 for bipolar input.

EXAMPLE

#include “tpmc500api.h”

TPMC500_HANDLE hdl;

TPMC500_STATUS result;

int AdcData;

int channel, gain, flags;

channel = 32;

gain = 2;

flags = TPMC500_CORR | TPMC500_FAST;

result = tpmc500Read(hdl, channel, gain, flags, &AdcData);

if (result != TPMC500_OK)

{

 /* handle error */

}

TPMC500-SW-82 - Linux Device Driver Page 18 of 31

RETURNS

On success, TPMC500_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC500_ERR_ACCESS The module type has not been configured.

TPMC500_ERR_INVALID_HANDLE The specified TPMC500_HANDLE is invalid.

TPMC500_ERR_INVAL At least one of the parameters is invalid.

TPMC500_ERR_TIMEOUT ADC conversion timed out.

TPMC500_ERR_RANGE Invalid channel number.

TPMC500_ERR_BUSY This error occurs if the sequencer is still running. Please
stop the sequencer before executing this function.

TPMC500-SW-82 - Linux Device Driver Page 19 of 31

3.2.2 tpmc500StartSequencer

NAME

tpmc500StartSequencer – Start sequencer operation

SYNOPSIS

TPMC500_STATUS tpmc500StartSequencer
(

TPMC500_HANDLE hdl,
unsigned int CycleTime,
unsigned int NumOfBufferPages,
unsigned int NumOfChannels,
TPMC500_CHAN_CONF *ChanConf

)

DESCRIPTION

This function sets up and starts the sequencer. The setup specifies the channels to be used in
sequencer mode and how they will be setup, defining gain, correction and input interface. Additional
the sequencer cycle time is defined and depth of the drivers sequencer FIFO will be configured.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

CycleTime

This argument specifies the repeat frequency of the sequencer in 100 μs steps. Each time the
sequencer timer reaches the programmed cycle time a new AD conversion of all active
channels is started. Valid values are in the range from 100 microseconds to 6.5535 seconds.

NumOfBufferPages

This argument specifies the number of sample blocks in the ring buffer. A sample block contains
the samples of all channels (NumOfChannels) per sequencer cycle.

NumOfChannels

This argument specifies the number of active channels for this job. The maximum number is 32.

ChanConf

This array of channel configuration structures specifies the configuration of the active channels.
The channel configuration defines the channel number, the gain and some flags. The ordering
of channels in a ring buffer page is the same as defined in this array.

TPMC500-SW-82 - Linux Device Driver Page 20 of 31

typedef struct

{

unsigned int ChanToUse;

unsigned int gain;

unsigned int flags;

} TPMC500_CHAN_CONF;

ChanToUse

This parameter specifies the input channel number. Valid channels for single-ended
mode are 1…32, for differential mode 1...16.

gain

This Parameter specifies the gain for this channel. Valid gains are 1, 2, 5, 10 for
TPMC500-10/-12/-20/-22 and 1, 2, 4, 8 for TPMC500-11/-13/-21/-23.

flags

Set of bit flags that control the AD conversion. The following flags could be OR’ed:

Flag Meaning

TPMC500_DIFF If this flag is set the ADC input works in differential mode
otherwise in single-ended (default).

TPMC500_CORR Perform an offset and gain correction with factory
calibration data stored in the TPMC500 EEPROM.

EXAMPLE

#include “tpmc500api.h”

TPMC500_HANDLE hdl;

TPMC500_STATUS result;

unsigned int CycleTime;

unsigned int NumOfBufferPages;

unsigned int NumOfChannels;

TPMC500_CHAN_CONF ChanConf[TPMC500_MAX_CHAN];

CycleTime = 5000;

NumOfBufferPages = 100;

NumOfChannels = 2;

ChanConf[0].ChanToUse = 1;

ChanConf[0].gain = 1;

ChanConf[0].flags = TPMC500_CORR;

ChanConf[1].ChanToUse = 20;

ChanConf[1].gain = 5;

ChanConf[1].flags = TPMC500_CORR;

…

TPMC500-SW-82 - Linux Device Driver Page 21 of 31

// start the sequencer

result = tpmc500StartSequencer(hdl, CycleTime, NumOfBufferPages,

 NumOfChannels, ChanConf);

if (result != TPMC500_OK)

{

 /* handle error */

}

RETURNS

On success, TPMC500_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC500_ERR_ACCESS The module type has not been configured.

TPMC500_ERR_INVALID_HANDLE The specified TPMC500_HANDLE is invalid.

TPMC500_ERR_INVAL At least one of the parameters is invalid.

TPMC500_ERR_RANGE Invalid channel number.

TPMC500_ERR_BUSY This error occurs if the sequencer is still running. Please
stop the sequencer before executing this function.

TPMC500-SW-82 - Linux Device Driver Page 22 of 31

3.2.3 tpmc500ReadSequencer

NAME

tpmc500ReadSequencer – Read next data block of sequencer samples

SYNOPSIS

TPMC500_STATUS tpmc500ReadSequencer
(

TPMC500_HANDLE hdl,
int *pData,
unsigned int *pStatus

)

DESCRIPTION

This function returns the next available sequencer data block within the ring buffer. If no data block is
available the function returns TPMC500_ERR_NODATA. In this case it must be called again until new
data is available.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

pData

This argument points to an array of integer items where the converted data of all configured
channels of a sequencer cycle is returned. The number of channels and the channel
configuration was setup using the tpmc500StartSequencer function. The first array item [0]
belongs to the channel configured by ChanConfig[0], the second array item [1] belongs to the
channel configured by ChanConfig[1] and so forth. Please refer to the example application for
details.

TPMC500-SW-82 - Linux Device Driver Page 23 of 31

pStatus

This argument is a pointer to a variable which returns the actual sequencer status. Keep in mind
to check this status before each reading. If status is 0 no error is pending. A set of bits specifies
the error condition.

Value Description

TPMC500_BUF_OVERRUN This bit indicates a ring buffer overrun. The error
occurred if there is no space in ring buffer to write the
new AD data. In this case the new AD values are
discarded. The sequencer was not stopped.

TPMC500_DATA_OVERFLOW This indicates an overrun in the sequencer data RAM.
The error occurred if the driver is too slow to read the
data in time. The sequencer was stopped after this
error occurred.

TPMC500_TIMER_ERR Sequencer timer error (see also TPMC500 hardware
manual). The sequencer was stopped after this error
occurred.

TPMC500_INST_RAM_ERR Sequencer instruction RAM error (see also TPMC500
hardware manual). The sequencer was stopped after
this error occurred.

TPMC500_SEQ_STOPPED The Sequencer is not running.

EXAMPLE

#include “tpmc500api.h”

TPMC500_HANDLE hdl;

TPMC500_STATUS result;

unsigned int seqStatus;

int Data[32];

result = tpmc500ReadSequencer(hdl, Data, &seqStatus);

if (result != TPMC500_OK)

{

 if (result == TPMC500_ERR_NODATA)

 {

 /* try again reading data */

 }

 else

 {

 /* handle error */

 }

}

TPMC500-SW-82 - Linux Device Driver Page 24 of 31

RETURNS

On success, TPMC500_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC500_ERR_INVALID_HANDLE The specified TPMC500_HANDLE is invalid.

TPMC500_ERR_NODATA No new data available in the ring buffer

TPMC500-SW-82 - Linux Device Driver Page 25 of 31

3.2.4 tpmc500ReadSequencerTimeout

NAME

tpmc500ReadSequencerTimeout – Wait for and read next data block of sequencer samples

SYNOPSIS

TPMC500_STATUS tpmc500ReadSequencerTimeout
(

TPMC500_HANDLE hdl,
int *pData,
unsigned int *pStatus,
int Timeout_ms

)

DESCRIPTION

This function returns the next available sequencer data block within the ring buffer. If no data block is
available, the function waits for the next sequencer cycle, or until the specified timeout occurs.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

pData

This argument points to an array of integer items where the converted data of all configured
channels of a sequencer cycle is returned. The number of channels and the channel
configuration was setup using the tpmc500StartSequencer function. The first array item [0]
belongs to the channel configured by ChanConfig[0], the second array item [1] belongs to the
channel configured by ChanConfig[1] and so forth. Please refer to the example application for
details.

TPMC500-SW-82 - Linux Device Driver Page 26 of 31

pStatus

This argument is a pointer to a variable which returns the actual sequencer status. Keep in mind
to check this status before each reading. If status is 0 no error is pending. A set of bits specifies
the error condition.

Value Description

TPMC500_BUF_OVERRUN This bit indicates a ring buffer overrun. The error
occurred if there is no space in ring buffer to write the
new AD data. In this case the new AD values are
discarded. The sequencer was not stopped.

TPMC500_DATA_OVERFLOW This indicates an overrun in the sequencer data RAM.
The error occurred if the driver is too slow to read the
data in time. The sequencer was stopped after this error
occurred.

TPMC500_TIMER_ERR Sequencer timer error (see also TPMC500 hardware
manual). The sequencer was stopped after this error
occurred.

TPMC500_INST_RAM_ERR Sequencer instruction RAM error (see also TPMC500
hardware manual). The sequencer was stopped after
this error occurred.

TPMC500_SEQ_STOPPED The Sequencer is not running.

Timeout_ms

This argument specifies the timeout in milliseconds. The resulting timeout granularity depends
on the system.

EXAMPLE

#include “tpmc500api.h”

TPMC500_HANDLE hdl;

TPMC500_STATUS result;

unsigned int seqStatus;

int Data[32];

/* wait up to 1 second for sequencer data */

result = tpmc500ReadSequencerTimeout(hdl, Data, &seqStatus, 1000);

if (result != TPMC500_OK)

{

 /* handle error */

}

TPMC500-SW-82 - Linux Device Driver Page 27 of 31

RETURNS

On success, TPMC500_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC500_ERR_INVALID_HANDLE The specified TPMC500_HANDLE is invalid.

TPMC500_ERR_NODATA No new data available in the ring buffer

TPMC500-SW-82 - Linux Device Driver Page 28 of 31

3.2.5 tpmc500StopSequencer

NAME

tpmc500StopSequencer – Stop the sequencer

SYNOPSIS

TPMC500_STATUS tpmc500StopSequencer
(

TPMC500_HANDLE hdl
);

DESCRIPTION

This function stops execution of the sequencer mode on the specified device.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc500api.h”

TPMC500_HANDLE hdl;

TPMC500_STATUS result;

result = tpmc500StopSequencer(hdl);

if (result != TPMC500_OK)

{

 /* handle error */

}

TPMC500-SW-82 - Linux Device Driver Page 29 of 31

RETURNS

On success, TPMC500_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC500_ERR_INVALID_HANDLE The specified TPMC500_HANDLE is invalid.

TPMC500-SW-82 - Linux Device Driver Page 30 of 31

4 Diagnostic
If the TPMC500 does not work properly it is helpful to get some status information from the driver
respective kernel. To get debug output from the driver enable the following symbols in ‘tpmc500.c’ by
replacing “#undef” with “#define”:

#define DEBUG_TPMC500

The Linux /proc file system provides information about kernel, resources, driver, devices, and so on.
The following screen dumps display information of a correct running TPMC500 driver (see also the
proc man pages).

tail –f /var/log/messages /* before modprobing the TPMC500 driver */

Jul 21 12:14:59 linux kernel: TEWS Technologies - TPMC500 32 Channel 12 Bit ADC
version 2.0.x (<Release Date>)

Jul 21 12:14:59 linux kernel: TPMC500: Installing device (vendor=0x10B5,
device=0x9050) at 4:2.0

…

lspci -v

…

04:02.0 Signal processing controller: PLX Technology, Inc. PCI <-> IOBus Bridge
(rev 01)

 Subsystem: TEWS Technologies GmbH Device 01f4

 Flags: medium devsel, IRQ 17

 Memory at feb9fc00 (32-bit, non-prefetchable) [size=128]

 I/O ports at e000 [size=256]

 I/O ports at e400 [size=256]

 Memory at feb9f000 (32-bit, non-prefetchable) [size=2K]

 Kernel driver in use: TEWS Technologies - TPMC500 32 Channel 12 Bit ADC

…

cat /proc/devices

Character devices:

 1 mem

…

226 drm

253 tpmc500drv

Block devices:

 1 ramdisk

…

TPMC500-SW-82 - Linux Device Driver Page 31 of 31

cat /proc/interrupts

 CPU0 CPU1 CPU2 CPU3

 0: 42 0 0 0 IO-APIC-edge timer

 1: 4 3 1 2 IO-APIC-edge i8042

 6: 1 1 1 0 IO-APIC-edge floppy

 7: 1 0 0 0 IO-APIC-edge parport0

 8: 0 0 1 0 IO-APIC-edge rtc0

 9: 0 0 0 0 IO-APIC-fasteoi acpi

 12: 39 42 44 38 IO-APIC-edge i8042

 14: 1890 31 33 2735 IO-APIC-edge ata_piix

 15: 0 0 0 0 IO-APIC-edge ata_piix

 16: 0 0 0 0 IO-APIC-fasteoi uhci_hcd:usb5

 17: 13 9 0 97 IO-APIC-fasteoi TPMC500

 18: 0 0 0 0 IO-APIC-fasteoi uhci_hcd:usb4

…

cat /proc/ioports

…

 e000-efff : PCI Bus 0000:04

 e000-e0ff : 0000:04:02.0

 e400-e4ff : 0000:04:02.0

 e400-e4ff : TPMC500

 ec00-ec3f : 0000:04:00.0

 ec00-ec3f : e1000

 ffa0-ffaf : 0000:00:1f.1

 ffa0-ffaf : ata_piix

…

	1 Introduction
	2 Installation
	2.1 Build and install the Device Driver
	2.2 Uninstall the Device Driver
	2.3 Install Device Driver into the running Kernel
	2.4 Remove Device Driver from the running Kernel
	2.5 Change Major Device Number

	3 API Documentation
	3.1 General Functions
	3.1.1 tpmc500Open
	3.1.2 tpmc500Close
	3.1.3 tpmc500SetModelType
	3.1.4 tpmc500GetModuleInfo

	3.2 Device Access Functions
	3.2.1 tpmc500Read
	3.2.2 tpmc500StartSequencer
	3.2.3 tpmc500ReadSequencer
	3.2.4 tpmc500ReadSequencerTimeout
	3.2.5 tpmc500StopSequencer

	4 Diagnostic

