
The Embedded I/O Company

TDRV003-S
QNX6 - Neutrino De

16 (8) Digital In

16 (8) Digital Ou

Version 1.0.x

User Manu
Issue 1.0.0

November 20

TEWS TECHNOLOGIES G
Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49
e-mail: info@tews.com www.tews
W-95
vice Driver
puts

tputs

al

09

mbH
lstenbek, Germany
(0) 4101 4058 19
.com

TDRV003-SW-95 – QNX6 - Neutrino Device Driver Page 2 of 21

TDRV003-SW-95

QNX6-Neutrino Device Driver

16 (8) Digital Inputs
16 (8) Digital Outputs

Supported Modules:
TPMC670
TPMC671

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2009 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0.0 First Issue November 12, 2009

TDRV003-SW-95 – QNX6 - Neutrino Device Driver Page 3 of 21

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Build the device driver ...5
2.2 Build the example application ...5
2.3 Start the driver process..6

3 DEVICE INPUT/OUTPUT FUNCTIONS ... 7
3.1 open() ...7
3.2 close()...9
3.3 devctl() ...10

3.3.1 DCMD_TDRV003_READ...12
3.3.2 DCMD_TDRV003_WRITE...15
3.3.3 DCMD_TDRV003_DEBENABLE...17
3.3.4 DCMD_TDRV003_DEBDISABLE..18
3.3.5 DCMD_TDRV003_WDENABLE ..19
3.3.6 DCMD_TDRV003_WDDISABLE ...20
3.3.7 DCMD_TDRV003_WDRESET ..21

TDRV003-SW-95 – QNX6 - Neutrino Device Driver Page 4 of 21

1 Introduction
The TDRV003-SW-95 QNX-Neutrino device driver allows the operation of the TDRV003 digital I/O
PMC devices on QNX-Neutrino operating systems.

The TDRV003 device driver is basically implemented as a user installable Resource Manager. The
standard file (I/O) functions (open, close and devctl) provide the basic interface for opening and
closing a file descriptor and for performing device I/O and control operations.

The TDRV003-SW-95 device driver supports the following features:

 setting output lines
 reading state of input lines (immediate)
 reading state of input lines on a specified input event (transition, match)
 enable and disable output watchdog
 clearing state of output watchdog
 enable and disable input debouncer

The TDRV003-SW-95 device driver supports the modules listed below:

TPMC670-x0 16 digital inputs (24V)
16 digital outputs (24V, 0,5A)

(PMC)

TPMC670-x1 8 digital inputs (24V)
8 digital outputs (24V, 0,5A)

(PMC)

TPMC671-x0 16 digital inputs (24V)
16 digital high side switch outputs (24V, 0,5A)

(PMC)

TPMC671-x1 16 digital inputs (24V)
16 digital low side switch outputs (24V, 0,5A)

(PMC)

In this document all supported modules and devices will be called TDRV003. Specials for a
certain device will be advised.

To get more information about the features and use of the supported devices it is recommended to
read the manuals listed below.

TPMC670 and/or TPMC671 User Manual
TPMC670 and/or TPMC671 Engineering Manual

TDRV003-SW-95 – QNX6 - Neutrino Device Driver Page 5 of 21

2 Installation
Following files are located in the directory TDRV003-SW-95 on the distribution media:

TDRV003-SW-95-SRC.tar.gz GZIP compressed archive with driver source code
TDRV003-SW-95-1.0.0.pdf This manual in PDF format
ChangeLog.txt Release history
Release.txt Information about the Device Driver Release

The GZIP compressed archive TDRV003-SW-95-SRC.tar.gz contains the following files and
directories:

Directory path ‘tdrv003’:

/driver/tdrv003.c Driver source code
/driver/tdrv003.h Definitions and data structures for driver and application
/driver/tdrv003def.h Device driver include
/driver/Makefile
/driver/common.mk
driver/nto/* Build path
/example/example.c Example application
/example/Makefile
/example/common.mk
example/nto/* Build path

For installation copy the tar-archive into the /usr/src directory and unpack it (e.g. tar –xzvf
TDRV003-SW-95-SRC.tar.gz). After that the necessary directory structure for the automatic build
and the source files are available underneath the new directory called tdrv003.

Change to the driver directory /usr/src/tdrv003/driver and copy the header file tdrv003.h to /usr/include
allowing user application programs sharing the TDRV003 driver interface definitions and data
structures.

It is absolutely important to extract the TDRV003 tar archive in the /usr/src directory. Otherwise
the automatic build with make will fail.

2.1 Build the device driver
Change to the /usr/src/tdrv003/driver directory

Execute the Makefile:

make install
After successful completion the driver binary (tdrv003) will be installed in the /bin directory.

2.2 Build the example application
Change to the /usr/src/tdrv003/example directory

Execute the Makefile:

make install
After successful completion the example binary (tdrv003exa) will be installed in the /bin directory.

TDRV003-SW-95 – QNX6 - Neutrino Device Driver Page 6 of 21

2.3 Start the driver process
To start the TDRV003 device driver, you have to enter the process name with optional parameter from
the command shell or in the startup script.

tdrv003 [-v] &

The TDRV003 Resource Manager creates one device for every supported module and registers the
created devices in the Neutrinos pathname space under following names.

/dev/tdrv003_0
/dev/tdrv003_1
…
/dev/tdrv003_x

The reference between the created device names and the physical devices depends on the search
order of the PCI bus driver. The TDRV003 searches for supported devices in the following order:
TPMC670, TPMC671.

The pathname must be used in the application program to open a path to the desired TDRV003
device.

fd = open(“/dev/tdrv003_0”, O_RDWR);
For debugging, you can start the TDRV003 Resource Manager with the –v option. Now the Resource
Manager will print versatile information about TDRV003 configuration and command execution on the
terminal window.

tdrv003 –v &

Make sure that only one instance of the device driver process is started.

TDRV003-SW-95 – QNX6 - Neutrino Device Driver Page 7 of 21

3 Device Input/Output functions
This chapter describes the interface to the device driver I/O system.

3.1 open()

NAME

open() - open a file descriptor

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open (const char *pathname, int flags)

DESCRIPTION

The open function creates and returns a new file descriptor for the TDRV003 device named by
pathname. The flags argument controls how the file is to be opened. TDRV003 devices must be
opened O_RDWR.

EXAMPLE

int fd;

fd = open(“/dev/tdrv003_0”, O_RDWR);

if (fd == -1)
{

/* Handle error */
}

RETURNS

The normal return value from open is a non-negative integer file descriptor. In the case of an error, a
value of –1 is returned. The global variable errno contains the detailed error code.

TDRV003-SW-95 – QNX6 - Neutrino Device Driver Page 8 of 21

ERRORS

Returns only Neutrino specific error codes, see Neutrino Library Reference.

SEE ALSO

Library Reference - open()

TDRV003-SW-95 – QNX6 - Neutrino Device Driver Page 9 of 21

3.2 close()

NAME

close() – close a file descriptor

SYNOPSIS

#include <unistd.h>

int close (int filedes)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

int fd;

if (close(fd) != 0)
{

/* handle close error conditions */
}

RETURNS

The normal return value from close is 0. In the case of an error, a value of –1 is returned. The global
variable errno contains the detailed error code.

ERRORS

Returns only Neutrino specific error code, see Neutrino Library Reference.

SEE ALSO

Library Reference - close()

TDRV003-SW-95 – QNX6 - Neutrino Device Driver Page 10 of 21

3.3 devctl()

NAME

devctl() – device control functions

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>
#include <devctl.h>

int devctl
(

int filedes,
int dcmd,
void *data_ptr,
size_t n_bytes,
int *dev_info_ptr

)

DESCRIPTION

The devctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument dcmd specifies the control code for the operation.

The arguments data_ptr and n_bytes depends on the command and will be described for each
command in detail later in this chapter. Usually data_ptr points to a buffer that passes data between
the user task and the driver and n_bytes defines the size of this buffer.

The argument dev_info_ptr is unused for the TDRV003 driver and should be set to NULL.

The following devctl command codes are defined in tdrv003.h:

Symbol Meaning
DCMD_TDRV003_READ Read input state (on event)
DCMD_TDRV003_WRITE Set output lines
DCMD_TDRV003_DEBENABLE Setup and enable input debouncing
DCMD_TDRV003_DEBDISABLE Disable input debouncing
DCMD_TDRV003_WDENABLE Enable output watchdog
DCMD_TDRV003_WDDISABLE Disable output watchdog
DCMD_TDRV003_WDRESET Delete watchdog error

See behind for more detailed information on each control code.

TDRV003-SW-95 – QNX6 - Neutrino Device Driver Page 11 of 21

RETURNS

On success, EOK is returned. In the case of an error, the appropriate error code is returned by the
function (not in errno!).

ERRORS

Returns only Neutrino specific error codes, see Neutrino Library Reference.

Other function dependent error codes will be described for each devctl code separately. Note, the
TDRV003 driver always returns standard QNX error codes.

SEE ALSO

Library Reference - devctl()

TDRV003-SW-95 – QNX6 - Neutrino Device Driver Page 12 of 21

3.3.1 DCMD_TDRV003_READ

NAME

DCMD_TDRV003_READ – Read input state, if specified after waiting for an event

DESCRIPTION

This function reads the state of the input lines. If it is configured the function will wait until a specified
event occurs on selected input lines, before reading. A pointer to the callers read buffer
(TDRV003_READ_BUFFER) must be passed by the parameters data_ptr and n_bytes to the device.

typedef struct
{

int mode;
unsigned short mask;
unsigned short match;
int timeout;
unsigned short value;

} TDRV003_READ_BUFFER, *PTDRV003_READ_BUFFER;

Remember interrupt latency:

All modes waiting for an event may return a value which is not identical to the value at the
moment the event has occurred. There is a latency between the event occurrence and the call
of the drivers ISR reading the input state.

Members

mode

This argument specifies the event to wait for. Symbols for the input mode are defined in
tdrv003.h:

Define Description
TDRV003_NOW The driver reads the input port and returns immediately to the

caller. The parameter mask, match and timeout are not relevant in
this mode.

TDRV003_MATCH The driver reads the input port if the masked input bits match to the
specified pattern. The input mask must be specified in the
parameter mask. A 1 value in mask means than the input bit value
“must-match” identically to the corresponding bit in the match
parameter.
This mode is not recommended for quickly changing signals. The
driver may miss very short matching states, because the input state
may have changed again when the event handling is done in the
ISR.

TDRV003-SW-95 – QNX6 - Neutrino Device Driver Page 13 of 21

TDRV003_HIGH_TR The driver reads the input port if a high-transition at the specified
bit position occurs. A 1 value in mask specifies the bit position of
the input port. If you specify more than one bit position the events
are OR’ed. That means the read is completed if a high-transition at
least at one relevant bit position occur. The parameter match is not
relevant.

TDRV003_LOW_TR The driver reads the input port if a low-transition at the specified bit
position occurs. A 1 value in mask specifies the bit position of the
input port. If you specify more than one bit position the events are
OR’ed. That means the read is completed if a low-transition at least
at one relevant bit position occur. The parameter match is not
relevant

TDRV003_ANY_TR The driver reads the input port if a transition (high or low) at the
specified bit position occurs. A 1 value in mask specifies the bit
position of the input port. If you specify more than one bit position
the events are OR’ed. That means the read is completed if a
transition at least at one relevant bit position occur. The parameter
match is not relevant

mask

Specifies the bit mask of relevant bits for the event. A 1 value marks the corresponding bit
position as relevant. Bit 0 represents input line 1, bit 1 represents input line 2, and so on.

match

Specifies the pattern that must match to the state of the input port. Only the bit positions
specified by mask are relevant for the event. Bit 0 represents input line 1, bit 1 represents input
line 2, and so on.

timeout

Specifies the amount of time (in seconds) the caller is willing to wait for the specified event to
occur.

value

This argument returns the state of the input (when the event has occurred). Bit 0 represents
input line 1, bit 1 represents input line 2, and so on.

EXAMPLE

#include <tdrv003.h>

int fd;
int result;
TDRV003_READ_BUF rdBuf;

/* --- read input state immediately --- */
rdBuf.mode = TDRV003_NOW;

…

TDRV003-SW-95 – QNX6 - Neutrino Device Driver Page 14 of 21

…

result = devctl(fd, DCMD_TDRV003_READ, &rdBuf, sizeof(rdBuf), NULL);

if (result == EOK)
{

/* Read has been successful */
printf(“Input State: %04Xh\n”, rdBuf.value);

}
else
{

/* Read failed */
}

…

/* --- read input state on a low to high transition on input line 4 --- */
rdBuf.mode = TDRV003_HIGH_TR;
rdBuf.mask = 1 << 3; /* input line 4 */
rdBuf.timeout = 20; /* 20 seconds */

result = devctl(fd, DCMD_TDRV003_READ, &rdBuf, sizeof(rdBuf), NULL);

if (result == EOK)
{

/* Read has been successful */
printf(“Input State: %04Xh\n”, rdBuf.value);

}
else
{

/* Read failed */
}

ERRORS

EINVAL Invalid argument. This error code is returned if the size of the
message buffer is too small, or a specified is invalid.

ENOMEM No memory available to allocated resources to handle the read
command.

ETIMEDOUT The allowed time to finish the read request has elapsed.

TDRV003-SW-95 – QNX6 - Neutrino Device Driver Page 15 of 21

3.3.2 DCMD_TDRV003_WRITE

NAME

DCMD_TDRV003_WRITE - Write output value

DESCRIPTION

This function writes a new value for the output lines. A pointer to the callers write buffer
(TDRV003_WRITE_BUFFER) must be passed by the parameters data_ptr and n_bytes to the device.

typedef struct
{

unsigned short mask;
unsigned short value;

} TDRV003_WRITE_BUFFER, *PTDRV003_WRITE_BUFFER;

Members

mask

This argument specifies the mask of bits which should be affected. A 1 value marks the
corresponding bit position to be set, a 0 value masks the bit position as “do not change”. Bit 0
represents input line 1, bit 1 represents input line 2, and so on.

value

This argument specifies the new output value. Bit 0 represents input line 1, bit 1 represents
input line 2, and so on.

EXAMPLE

#include <tdrv003.h>

int fd;
int result;
TDRV003_WRITE_BUFFER wrBuf;

/* --- set output lines 1..8 --- */
wrBuf.mask = 0x00FF;
wrBuf.value = 0x1234; /* only 0x34 will be written */

…

TDRV003-SW-95 – QNX6 - Neutrino Device Driver Page 16 of 21

…

result = devctl(fd, DCMD_TDRV003_WRITE, &wrBuf, sizeof(wrBuf), NULL);

if (result == EOK)
{

/* New output successfully written */
}
else
{

/* Write failed */
}

ERRORS

EIO The watchdog status is set and must be reset before a new value
can be written

TDRV003-SW-95 – QNX6 - Neutrino Device Driver Page 17 of 21

3.3.3 DCMD_TDRV003_DEBENABLE

NAME

DCMD_TDRV003_DEBENABLE – Setup and enable input debouncing

DESCRIPTION

This function sets up the debouncer time and enables the input debouncer. The function dependent
parameters data_ptr and n_bytes specifies a buffer (unsigned short) which contains the new value of
the debouncer register.

EXAMPLE

#include <tdrv003.h>

int fd;
int result;
unsigned short debVal;

/* --- start debouncer with ~1ms debouncing --- */
debVal = 143;

result = devctl(fd, DCMD_TDRV003_DEBENABLE, &debVal, sizeof(debVal), NULL);

if (result == EOK)
{

/* Debouuncer successfully started */
}
else
{

/* Debouncer start failed */
}

TDRV003-SW-95 – QNX6 - Neutrino Device Driver Page 18 of 21

3.3.4 DCMD_TDRV003_DEBDISABLE

NAME

DCMD_TDRV003_DEBDISABLE – Disable input debouncing

DESCRIPTION

This function disables the input debouncer. The function dependent parameters are not used.

EXAMPLE

#include <tdrv003.h>

int fd;
int result;

/* --- stop debouncinging --- */
result = devctl(fd, DCMD_TDRV003_DEBDISABLE, NULL, 0, NULL);

if (result != EOK)
{

/* Debouuncer successfully stopped */
}
else
{

/* Debouncer stopped failed */
}

TDRV003-SW-95 – QNX6 - Neutrino Device Driver Page 19 of 21

3.3.5 DCMD_TDRV003_WDENABLE

NAME

DCMD_TDRV003_WDENABLE – Enable output watchdog

DESCRIPTION

This function enables the output watchdog. The function dependent parameters are not used.

The output must be rewritten (triggered) within 120ms, or the watchdog will set the output lines
inactive and announce the watchdog error.

A watchdog error must be cleared with DCMD_TDRV003_WDRESET before a new write is
allowed and output lines can be set again.

EXAMPLE

#include <tdrv003.h>

int fd;
int result;

/* --- enable output watchdog --- */
result = devctl(fd, DCMD_TDRV003_WDENABLE, NULL, 0, NULL);

if (result != EOK)
{

/* Output watchdog successfully enabled*/
}
else
{

/* Enable watchdog failed */
}

TDRV003-SW-95 – QNX6 - Neutrino Device Driver Page 20 of 21

3.3.6 DCMD_TDRV003_WDDISABLE

NAME

DCMD_TDRV003_WDDISABLE – Disable output watchdog

DESCRIPTION

This function disables the output watchdog. The function dependent parameters are not used.

EXAMPLE

#include <tdrv003.h>

int fd;
int result;

/* --- disable output watchdog --- */
result = devctl(fd, DCMD_TDRV003_WDDISABLE, NULL, 0, NULL);

if (result != EOK)
{

/* Output watchdog successfully disabled */
}
else
{

/* Disable watchdog failed */
}

TDRV003-SW-95 – QNX6 - Neutrino Device Driver Page 21 of 21

3.3.7 DCMD_TDRV003_WDRESET

NAME

DCMD_TDRV003_WDRESET – Resets the state of the output watchdog

DESCRIPTION

This function resets the state (watchdog error) of the output watchdog and allows new writes to the
output. The function dependent parameters are not used.

EXAMPLE

#include <tdrv003.h>

int fd;
int result;

/* --- reset output watchdog error --- */
result = devctl(fd, DCMD_TDRV003_WDRESET, NULL, 0, NULL);

if (result != EOK)
{

/* Status of watchdog successfully cleared */
}
else
{

/* Clear of watchdog status failed */
}

	Introduction
	Installation
	Build the device driver
	Build the example application
	Start the driver process

	Device Input/Output functions
	open()
	close()
	devctl()
	DCMD_TDRV003_READ
	DCMD_TDRV003_WRITE
	DCMD_TDRV003_DEBENABLE
	DCMD_TDRV003_DEBDISABLE
	DCMD_TDRV003_WDENABLE
	DCMD_TDRV003_WDDISABLE
	DCMD_TDRV003_WDRESET

